Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.285
1.
J Prev Alzheimers Dis ; 11(3): 582-588, 2024.
Article En | MEDLINE | ID: mdl-38706274

BACKGROUND: Long sedentary time and physical inactivity are negatively related to cognition, but the cut-off value remains unclear, and apolipoprotein E polymorphism ε4 (APOE ε4) is a known genetic risk factor of mild cognitive impairment (MCI). OBJECTIVES: To explore longitudinal association of sedentary time and MCI, and to identify a cutoff value that increases the risk of developing MCI, taking into account APOE ε4 stratification and its interactions. DESIGN: A prospective cohort study. SETTING: Population-based study. PARTICIPANTS: We included 4932 older adults from Tianjin Elderly Nutrition and Cognition (TENC) cohort study recruited from March 2018 to June 2021 with 3.11 years of median follow-up time. MEASUREMENTS: The primary outcome was newly diagnosed MCI, which was diagnosed by a modified version of the Petersen's criteria. The information of sedentary time (hours/day) and physical activity (MET-h/week) were obtained by questionnaire. Cox proportional hazard regression models and restricted spline curve were conducted. RESULTS: A total of 4932 participants were included (mean [SD] age, 67.85 [4.96] years; 2627 female [53.3%] and 2305 male [46.7%]), 740 newly onset MCI patients were identified. Longer sedentary time was associated with higher risk of MCI for all participants (HR:1.069, 95%CI: 1.034, 1.105), especially in APOE ε4 non-carriers (HR:1.083, 95%CI: 1.045, 1.123) whether adjusted potential confounders. Sedentary time had synergistic interactions with APOE ε4 (ß:1.503, 95%CI: 1.163, 1.942) and physical activities (ß: 1.495, 95%CI: 1.210, 1.846). Restricted spline curve showed a cut-off value of 3.03 hours/day. CONCLUSIONS: Long sedentary time (≥3.03 hours/day) could increase MCI risk, especially in APOE ε4 non-carriers, people with higher PA, aged 65 and above.


Apolipoprotein E4 , Cognitive Dysfunction , Sedentary Behavior , Humans , Cognitive Dysfunction/genetics , Cognitive Dysfunction/epidemiology , Female , Male , Apolipoprotein E4/genetics , Prospective Studies , Aged , Risk Factors , Longitudinal Studies , Middle Aged , Exercise , China/epidemiology
2.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714706

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
3.
BMC Psychiatry ; 24(1): 338, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711061

BACKGROUND: Obstructive sleep apnea (OSA) is a pervasive, chronic sleep-related respiratory condition that causes brain structural alterations and cognitive impairments. However, the causal association of OSA with brain morphology and cognitive performance has not been determined. METHODS: We conducted a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal relationship between OSA and a range of neurocognitive characteristics, including brain cortical structure, brain subcortical structure, brain structural change across the lifespan, and cognitive performance. Summary-level GWAS data for OSA from the FinnGen consortium was used to identify genetically predicted OSA. Data regarding neurocognitive characteristics were obtained from published meta-analysis studies. Linkage disequilibrium score regression analysis was employed to reveal genetic correlations between OSA and related traits. RESULTS: Our MR study provided evidence that OSA was found to significantly increase the volume of the hippocampus (IVW ß (95% CI) = 158.997 (76.768 to 241.227), P = 1.51e-04), with no heterogeneity and pleiotropy detected. Nominally causal effects of OSA on brain structures, such as the thickness of the temporal pole with or without global weighted, amygdala structure change, and cerebellum white matter change covering lifespan, were observed. Bidirectional causal links were also detected between brain cortical structure, brain subcortical, cognitive performance, and OSA risk. LDSC regression analysis showed no significant correlation between OSA and hippocampus volume. CONCLUSIONS: Overall, we observed a positive association between genetically predicted OSA and hippocampus volume. These findings may provide new insights into the bidirectional links between OSA and neurocognitive features, including brain morphology and cognitive performance.


Brain , Mendelian Randomization Analysis , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/complications , Brain/diagnostic imaging , Brain/pathology , Cognition/physiology , Genome-Wide Association Study , Magnetic Resonance Imaging , Male , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology
4.
Hum Brain Mapp ; 45(7): e26709, 2024 May.
Article En | MEDLINE | ID: mdl-38746977

The high prevalence of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) makes early prevention of AD extremely critical. Neuroticism, a heritable personality trait associated with mental health, has been considered a risk factor for conversion from aMCI to AD. However, whether the neuroticism genetic risk could predict the conversion of aMCI and its underlying neural mechanisms is unclear. Neuroticism polygenic risk score (N-PRS) was calculated in 278 aMCI patients with qualified genomic and neuroimaging data from ADNI. After 1-year follow-up, N-PRS in patients of aMCI-converted group was significantly greater than those in aMCI-stable group. Logistic and Cox survival regression revealed that N-PRS could significantly predict the early-stage conversion risk from aMCI to AD. These results were well replicated in an internal dataset and an independent external dataset of 933 aMCI patients from the UK Biobank. One sample Mendelian randomization analyses confirmed a potentially causal association from higher N-PRS to lower inferior parietal surface area to higher conversion risk of aMCI patients. These analyses indicated that neuroticism genetic risk may increase the conversion risk from aMCI to AD by impairing the inferior parietal structure.


Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Multifactorial Inheritance , Neuroticism , Parietal Lobe , Humans , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Female , Aged , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Aged, 80 and over , Mendelian Randomization Analysis , Middle Aged , Genetic Predisposition to Disease
5.
J Prev Alzheimers Dis ; 11(3): 769-779, 2024.
Article En | MEDLINE | ID: mdl-38706293

BACKGROUND: As the global population ages, cognitive impairment (CI) becomes more prevalent. Tea has been one of the most popular drinks in the world. Several studies have demonstrated that tea consumption has an impact on cognitive function. OBJECTIVE: This study aims to examine the association between tea consumption and cognitive function and explore the potential effect of genetics on the relationship between tea consumption and CI risk in older adults. DESIGN: This is a prospective longitudinal study using data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). SETTING: Six waves of data from CLHLS containing 76,270 subjects were analyzed. Generalized estimation equations (GEE) with a logit link function were adopted to estimate the effect of tea consumption on CI risk from a cross-sectional and longitudinal perspective. PARTICIPANTS: A population-based cohort of adults aged 65-105 years. MEASUREMENTS: The frequency and type of tea consumption were obtained by questionnaires. CI was measured based on MMSE. Polygenic risk was measured using the polygenic score approach described by the International Schizophrenia. RESULTS: The results showed that drinking green tea had a better protective effect on cognitive function than other types of tea, the incidence of CI gradually decreased with the increase of tea consumption frequency, and men were more likely to benefit from tea consumption. Additionally, we also found a significant interaction between tea consumption and genetic risk, measured by polygenic risk score (PRS). CONCLUSIONS: Based on current research evidence, tea consumption, may be a simple and important measure for CI prevention.


Cognition , Cognitive Dysfunction , Tea , Humans , Male , Aged , Female , Longitudinal Studies , Cognition/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/epidemiology , Aged, 80 and over , Prospective Studies , Cross-Sectional Studies , China/epidemiology
6.
Commun Biol ; 7(1): 562, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734709

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Cognitive Dysfunction , Exosomes , HMGB1 Protein , Mesenchymal Stem Cells , MicroRNAs , Sepsis-Associated Encephalopathy , MicroRNAs/genetics , MicroRNAs/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/genetics , Mice , Exosomes/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Male , Mesenchymal Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal
8.
Article Ru | MEDLINE | ID: mdl-38676676

This review highlights literature data on potential genetic markers that potentially influence the development of postoperative cognitive dysfunction, such as TOMM40, APOE, TREM2, METTL3, PGC1a, HMGB1 and ERMN. The main pathogenetic mechanisms triggered by these genes and leading to the development of cognitive impairment after anesthesia are described. The paper systematizes previously published works that provide evidence of the impact of specific genetic variants on the development of postoperative cognitive dysfunction.


Apolipoproteins E , Mitochondrial Precursor Protein Import Complex Proteins , Postoperative Cognitive Complications , Receptors, Immunologic , Humans , Postoperative Cognitive Complications/genetics , Apolipoproteins E/genetics , Methyltransferases/genetics , Membrane Glycoproteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Membrane Transport Proteins/genetics , Genetic Markers , Reelin Protein , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Genetic Predisposition to Disease
9.
Am J Alzheimers Dis Other Demen ; 39: 15333175241243183, 2024.
Article En | MEDLINE | ID: mdl-38592304

Triggering receptor expressed on myeloid cells 2 (TREM2) is upregulated in activated microglia and may be related to cognitive decline in patients with Alzheimer's disease (AD). There is conflicting evidence regarding the association of peripheral TREM2 mRNA expression/soluble TREM2 (the extracellular domain of TREM2) with cognitive function/neuroinflammation in patients with AD. Herein, we studied the TREM2 and TREM2alt mRNA expression and their association with the cognitive performance in subjects with mild dementia due to AD and healthy controls. In a subgroup of patients with AD, magnetic resonance spectroscopy was used to measure the myo-inositol level in the posterior cingulate cortex, a surrogate marker for neuroinflammation. The results showed that increased TREM2 and TREM2alt mRNA expression is associated with AD pathogenesis at the mild dementia stage, thereby serving as a potential biomarker for early symptomatic stage of AD. TREM2 may exert protective effects on both cognition and central neuroinflammation.


Alzheimer Disease , Cognitive Dysfunction , Dementia , Humans , Alzheimer Disease/genetics , Cognitive Dysfunction/genetics , Myeloid Cells , Neuroinflammatory Diseases , Protein Isoforms , RNA, Messenger/genetics
10.
Sci Rep ; 14(1): 8270, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594359

Alzheimer's disease (AD) and post-stroke cognitive impairment (PSCI) are the leading causes of progressive dementia related to neurodegenerative and cerebrovascular injuries in elderly populations. Despite decades of research, patients with these conditions still lack minimally invasive, low-cost, and effective diagnostic and treatment methods. MicroRNAs (miRNAs) play a vital role in AD and PSCI pathology. As they are easily obtained from patients, miRNAs are promising candidates for the diagnosis and treatment of these two disorders. In this study, we performed complete sequencing analysis of miRNAs from 24 participants, split evenly into the PSCI, post-stroke non-cognitive impairment (PSNCI), AD, and normal control (NC) groups. To screen for differentially expressed miRNAs (DE-miRNAs) in patients, we predicted their target genes using bioinformatics analysis. Our analyses identified miRNAs that can distinguish between the investigated disorders; several of them were novel and never previously reported. Their target genes play key roles in multiple signaling pathways that have potential to be modified as a clinical treatment. In conclusion, our study demonstrates the potential of miRNAs and their key target genes in disease management. Further in-depth investigations with larger sample sizes will contribute to the development of precise treatments for AD and PSCI.


Alzheimer Disease , Cognition Disorders , Cognitive Dysfunction , MicroRNAs , Stroke , Humans , Aged , MicroRNAs/genetics , Cognition Disorders/etiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/complications , Biomarkers , Stroke/complications
11.
Oncol Nurs Forum ; 51(3): 263-274, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38668911

OBJECTIVES: To evaluate for associations of polymorphisms for potassium channel genes in patients with breast cancer who were classified as having high or low-moderate levels of cancer-related cognitive impairment (CRCI). SAMPLE & SETTING: 397 women who were scheduled to undergo surgery for breast cancer on one breast were recruited from breast care centers located in a comprehensive cancer center, two public hospitals, and four community practices. METHODS & VARIABLES: CRCI was assessed using the Attentional Function Index prior to and for six months after surgery. The attentional function classes were identified using growth mixture modeling. RESULTS: Differences between patients in the high versus low-moderate attentional function classes were evaluated. Six single nucleotide polymorphisms for potassium channel genes were associated with low-moderate class membership. IMPLICATIONS FOR NURSING: The results contribute to knowledge of the mechanisms for CRCI. These findings may lead to the identification of high-risk patients and the development of novel therapeutics.


Breast Neoplasms , Cognitive Dysfunction , Polymorphism, Single Nucleotide , Self Report , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/complications , Breast Neoplasms/psychology , Middle Aged , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Aged , Adult , Potassium Channels/genetics , Aged, 80 and over
12.
Sci Rep ; 14(1): 9646, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671048

While chronological age is a strong predictor for health-related risk factors, it is an incomplete metric that fails to fully characterize the unique aging process of individuals with different genetic makeup, neurodevelopment, and environmental experiences. Recent advances in epigenomic array technologies have made it possible to generate DNA methylation-based biomarkers of biological aging, which may be useful in predicting a myriad of cognitive abilities and functional brain network organization across older individuals. It is currently unclear which cognitive domains are negatively correlated with epigenetic age above and beyond chronological age, and it is unknown if functional brain organization is an important mechanism for explaining these associations. In this study, individuals with accelerated epigenetic age (i.e. AgeAccelGrim) performed worse on tasks that spanned a wide variety of cognitive faculties including both fluid and crystallized intelligence (N = 103, average age = 68.98 years, 73 females, 30 males). Additionally, fMRI connectome-based predictive models suggested a mediating mechanism of functional connectivity on epigenetic age acceleration-cognition associations primarily in medial temporal lobe and limbic structures. This research highlights the important role of epigenetic aging processes on the development and maintenance of healthy cognitive capacities and function of the aging brain.


Aging , Brain , Cognition , Connectome , Epigenesis, Genetic , Magnetic Resonance Imaging , Humans , Female , Male , Aged , Brain/diagnostic imaging , Brain/metabolism , Cognition/physiology , Aging/genetics , Aging/physiology , Middle Aged , DNA Methylation , Aged, 80 and over , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging
13.
Genes (Basel) ; 15(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38674375

22q11.2 Deletion Syndrome (22q11.2DS), the most common chromosomal microdeletion, presents as a heterogeneous phenotype characterized by an array of anatomical, behavioral, and cognitive abnormalities. Individuals with 22q11.2DS exhibit extensive cognitive deficits, both in overall intellectual capacity and focal challenges in executive functioning, attentional control, perceptual abilities, motor skills, verbal processing, as well as socioemotional operations. Heterogeneity is an intrinsic factor of the deletion's clinical manifestation in these cognitive domains. Structural imaging has identified significant changes in volume, thickness, and surface area. These alterations are closely linked and display region-specific variations with an overall increase in abnormalities following a rostral-caudal gradient. Despite the extensive literature developing around the neurocognitive and neuroanatomical profiles associated with 22q11.2DS, comparatively little research has addressed specific structure-function relationships between aberrant morphological features and deficient cognitive processes. The current review attempts to categorize these limited findings alongside comparisons to populations with phenotypic and structural similarities in order to answer to what degree structural findings can explain the characteristic neurocognitive deficits seen in individuals with 22q11.2DS. In integrating findings from structural neuroimaging and cognitive assessments, this review seeks to characterize structural changes associated with the broad neurocognitive challenges faced by individuals with 22q11.2DS.


Cognitive Dysfunction , DiGeorge Syndrome , Humans , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , DiGeorge Syndrome/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Neuroimaging
14.
Front Endocrinol (Lausanne) ; 15: 1386773, 2024.
Article En | MEDLINE | ID: mdl-38660514

Background: Our previous multicenter case-control study showed that aging, up-regulation of platelet glycogen synthase kinase-3ß (GSK-3ß), impaired olfactory function, and ApoE ϵ4 genotype were associated with cognitive decline in type 2 diabetes mellitus (T2DM) patients. However, the causal relationship between these biomarkers and the development of cognitive decline in T2DM patients remains unclear. Methods: To further investigate this potential relationship, we designed a 6-year follow-up study in 273 T2DM patients with normal cognitive in our previous study. Baseline characteristics of the study population were compared between T2DM patients with and without incident mild cognitive impairment (MCI). We utilized Cox proportional hazard regression models to assess the risk of cognitive impairment associated with various baseline biomarkers. Receiver operating characteristic curves (ROC) were performed to evaluate the diagnostic accuracy of these biomarkers in predicting cognitive impairment. Results: During a median follow-up time of 6 years (with a range of 4 to 9 years), 40 patients (16.13%) with T2DM developed MCI. Participants who developed incident MCI were more likely to be older, have a lower education level, have more diabetic complications, a higher percentage of ApoE ϵ4 allele and a higher level of platelet GSK-3ß activity (rGSK-3ß) at baseline (P<0.05). In the longitudinal follow-up, individuals with higher levels of rGSK-3ß were more likely to develop incident MCI, with an adjusted hazard ratio (HR) of 1.60 (95% confidence interval [CI] 1.05, 2.46), even after controlling for potential confounders. The AUC of the combination of age, rGSK-3ß and ApoEϵ4 allele predicted for incident MCI was 0.71. Conclusion: Platelet GSK-3ß activity could be a useful biomarker to predict cognitive decline, suggesting the feasibility of identifying vulnerable population and implementing early prevention for dementia.


Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Glycogen Synthase Kinase 3 beta , Female , Humans , Male , Apolipoprotein E4/genetics , Biomarkers/blood , Case-Control Studies , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Follow-Up Studies , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism
15.
Neurobiol Aging ; 139: 44-53, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593527

Amyloid beta (Aß) follows a sigmoidal time function with varying accumulation rates. We studied how the position on this function, reflected by different Aß accumulation phases, influences APOE ɛ4's association with Aß and cognitive decline in 503 participants without dementia using Aß-PET imaging over 5.3-years. First, Aß load and accumulation were analyzed irrespective of phases using linear mixed regression. Generally, ɛ4 carriers displayed a higher Aß load. Moreover, Aß normal (Aß-) ɛ4 carriers demonstrated higher accumulation. Next, we categorized accumulation phases as "decrease", "stable", or "increase" based on trajectory shapes. After excluding the Aß-/decrease participants from the initial regression, the difference in accumulation attributable to genotype among Aß- individuals was no longer significant. Further analysis revealed that in increase phases, Aß accumulation was higher among noncarriers, indicating a genotype-related timeline shift. Finally, cognitive decline was analyzed across phases and was already evident in the Aß-/increase phase. Our results encourage early interventions for ɛ4 carriers and imply that monitoring accumulating Aß- individuals might help identify those at risk for cognitive decline.


Amyloid beta-Peptides , Cognitive Dysfunction , Genotype , Humans , Amyloid beta-Peptides/metabolism , Female , Male , Aged , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Middle Aged , Positron-Emission Tomography , Heterozygote , Apolipoprotein E4/genetics , Risk , Aged, 80 and over , Genetic Association Studies , Apolipoproteins E/genetics
16.
Alzheimers Dement ; 20(5): 3157-3166, 2024 May.
Article En | MEDLINE | ID: mdl-38477490

INTRODUCTION: We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS: One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS: Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aß) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION: The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.


Amyloid beta-Peptides , Apolipoprotein E4 , Cognitive Dysfunction , Positron-Emission Tomography , Synapses , Humans , Male , Female , Apolipoprotein E4/genetics , Aged , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Synapses/pathology , Synapses/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Genotype , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Biomarkers , Middle Aged , Alleles , Aged, 80 and over , Brain/pathology , Brain/diagnostic imaging
17.
Mol Carcinog ; 63(6): 1051-1063, 2024 Jun.
Article En | MEDLINE | ID: mdl-38482990

Men with prostate cancer are at increased risk of developing cognitive decline by the use of second-generation androgen signaling inhibitors. To date, reliable and sensitive biomarkers that could distinguish men at high risk of cognitive dysfunction under androgen deprivation therapy (ADT) have not been characterized. We used high-throughput transcriptional profiling utilizing human prostate cancer cell culture models mimicking ADT, biomarker selection using minimal common oncology data elements-cytoscape, and bioinformatic analyses employing Advaita® iPathwayGuide and DisGeNET for identification of disease-related gene associations. Validation analysis of genes was performed on brain neuronal and glial cells by quantitative real-time polymerase chain reaction assay. Our systematic analysis of androgen deprivation-associated genes involved multiple biological processes, including neuroactive ligand-receptor interaction, axon guidance, cytokine-cytokine receptor interaction, and metabolic and cancer signaling pathways. Genes associated with neuroreceptor ligand interaction, including gamma-aminobutyric acid (GABA) A and B receptors and nuclear core proteins, were identified as top upstream regulators. Functional enrichment and protein-protein interaction network analysis highlighted the role of ligand-gated ion channels (LGICs) and their receptors in cognitive dysfunction. Gene-disease association assigned forgetfulness, intellectual disability, visuospatial deficit, bipolar disorder, and other neurocognitive impairment with upregulation of type-1 angiotensin II receptor, brain-derived neurotrophic factor, GABA type B receptor subunit 2 (GABBR2), GABRA3, GABRA5, GABRB1, glycine receptor beta, glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 1, glutamate ionotropic receptor NMDA type subunit 2D, 5-hydroxytryptamine receptor 1D, interferon beta 1, and nuclear receptor subfamily 3 group C member 1 as top differentially expressed genes. Validation studies of brain glial cells, neurons, and patients on ADT demonstrated the association of these genes with cognitive decline. Our findings highlight LGICs as potential biomarkers for ADT-mediated cognitive decline. Further validation of these biomarkers may lead to future practical clinical use.


Cognitive Dysfunction , Prostatic Neoplasms , Humans , Male , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Androgen Antagonists/adverse effects , Androgen Antagonists/pharmacology , Cell Line, Tumor , Ion Channels/genetics , Ion Channels/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Protein Interaction Maps
18.
Neurol Sci ; 45(6): 2877-2880, 2024 Jun.
Article En | MEDLINE | ID: mdl-38494459

BACKGROUND: Spinocerebellar ataxia 17 (SCA17) is a rare autosomal dominant form of inherited ataxia, caused by heterozygous trinucleotide repeat expansions encoding glutamine in the TATA box-binding protein (TBP) gene. CASE DESCRIPTION: We describe the clinical history, neuropsychological, and neuroimaging findings of a 42-year-old patient who presented for medical attention showing prevalent behavioral and cognitive problems along with progressively worsening gait disturbances. The patient's family history indicated the presence of SCA17 in the maternal lineage. Genetic analysis confirmed a heterozygous 52-CAG pathological expansion repeat in TBP (normal interval, 25-40 CAG. Brain 18-fluorodeoxyglucose positron emission tomography (FDG-PET) showed bilateral hypometabolism in the sensorimotor cortex, with a slight predominance on the right, as well as in the striatal nuclei and thalamic hypermetabolism, a finding similar to what is observed in Huntington's disease. The patient also underwent neuropsychological evaluation, which revealed mild cognitive impairment and difficulties in social interaction and understanding other's emotions (Faux Pas Test and Reading the Mind in the Eyes Test). CONCLUSION: Our report emphasizes the importance of considering SCA17 as a possible diagnosis in patients with a prevalent progressive cognitive and behavioral disorders, even with a pattern of FDG-PET hypometabolism not primarily indicative of this disease.


Cognitive Dysfunction , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics , Adult , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Brain/diagnostic imaging , Social Behavior Disorders/diagnostic imaging , Social Behavior Disorders/etiology , Male , TATA-Box Binding Protein/genetics , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/genetics , Female , Neuropsychological Tests
19.
Exp Neurol ; 376: 114748, 2024 Jun.
Article En | MEDLINE | ID: mdl-38458310

BACKGROUND: The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function. PURPOSE: To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms. METHODS: The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B. RESULTS: The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not. CONCLUSION: Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.


AMP-Activated Protein Kinases , Cognitive Dysfunction , Dementia, Vascular , MicroRNAs , Rats, Sprague-Dawley , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Mice , Dementia, Vascular/genetics , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Rats , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Knockout , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
20.
Alzheimers Dement ; 20(4): 2873-2885, 2024 Apr.
Article En | MEDLINE | ID: mdl-38450831

INTRODUCTION: Rate of cognitive decline (RCD) in Alzheimer's disease (AD) determines the degree of impairment for patients and of burden for caretakers. We studied the association of RCD with genetic variants in AD. METHODS: RCD was evaluated in 62 familial AD (FAD) and 53 sporadic AD (SAD) cases, and analyzed by whole-exome sequencing for association with common exonic functional variants. Findings were validated in post mortem brain tissue. RESULTS: One hundred seventy-two gene variants in FAD, and 227 gene variants in SAD associated with RCD. In FAD, performance decline of the immediate recall of the Rey-Osterrieth figure test associated with 122 genetic variants. Olfactory receptor OR51B6 showed the highest number of associated variants. Its expression was detected in temporal cortex neurons. DISCUSSION: Impaired olfactory function has been associated with cognitive impairment in AD. Genetic variants in these or other genes could help to identify risk of faster memory decline in FAD and SAD patients.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Brain/metabolism , Neurons/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Mutation/genetics
...